Medicinenet.com Data Scraping, Web Scraping Medicinenet.com, Data Extraction Medicinenet.com, Scraping Web Data, Website Data Scraping, Email Scraping Medicinenet.com, Email Database, Data Scraping Services, Scraping Contact Information, Data Scrubbing

Thursday, 29 December 2016

How Data Mining is Useful to Companies?

How Data Mining is Useful to Companies?

Every business, organization and government bodies are collecting large amount of data for research and development. Such huge database can make them to have the information on hand when required. But most important is that it takes much time to find important information from the data. "If you want to grow rapidly, you must take quick and accurate decisions to grab timely available opportunities."

By applying the process of data mining, you can easily extract and filter required information from data. It is a processing of refining data and extracting important information. This process is mainly divided into 3 sections; pre-processing, mining and validation. In pre-processing, large amount of relevant data are collected. The mining section includes data classification, clustering, error correction and linking information. The last but important is validate without which you can not make trust on information. In short, data mining is a process of converting data into authentic information.

Let's have look on how data mining is useful to companies.

Fast and Feasible Decisions: To search information from huge bundle of data require more time. It also irritates a person who is doing such. With annoyed mind one can not take accurate decisions that's for sure. By having help of data mining, one can easily get information and make fast decisions. It also helps to compare information with various factors so the decisions become more reliable. Data mining is helpful in every decision to make it quick and feasible.

Powerful Strategies: After data mining, information becomes precise and easy to understand. While making strategies, one can easily analyze information in various dimensions. This analysis helps to get real idea about the strategy implementation. Management bodies can implement powerful strategies effectively to expand business boundaries.

Competitive Advantage: Information is easily available and precise so that one can compare it with competitors' information. It is very much required that you must compare the data otherwise you will have to suffer in business. After doing competitive analysis, one can make corrective decisions to go ahead from competitors. This way company can gain competitive advantage.

Your business can get all the benefits of data mining at cutting rates through outsourcing.

Source : http://ezinearticles.com/?How-Data-Mining-is-Useful-to-Companies?&id=2835042

Monday, 19 December 2016

Data Scrapping

Data Scrapping

People who are involved in business activities might have came across a term Data Scrapping. It is a process in which data or information can be extracted from the Portable Document Format file. They are easy to use tools that can automatically arrange the data that are found in different format in the internet. These advanced tools can collect useful information's according to the need of the user. What the user needs to do is simply enter the key words or phrases and the tool will extract all the related information available from the Portable Document Format file. It is widely used to take information's from the no editable format.

The main advantage of Portable Document Format files are they protect the originality of the document when you convert the data from Word to PDF. The size of the file is reduced by compression algorithems when the file are heavier due to the graphics or the images in the content. A Portable Document Format is independent of any software or hardware for installation. It allows encryption of files which enhances the security of your contents.

Although the Portable Document Format files have many advantages,it too have many other challenges. For example, you want to access a data that you found on the internet and the author encrypted the file preventing you from printing the file, you can easily do the scrapping process. These functions are easily available on the internet and the user can choose according to their needs. Using these programs you can extract the data that u need.

Source : http://ezinearticles.com/?Data-Scrapping&id=4951020

Wednesday, 14 December 2016

Data Extraction - A Guideline to Use Scrapping Tools Effectively

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.

Source:http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Thursday, 8 December 2016

Scraping in PDF Files - Improving Accessibility

Scraping in PDF Files - Improving Accessibility

Scraping of data is one procedure where mechanically information is sorted out that is contained on the Net in HTML, PDF and various other documents. It is also about collecting relevant data and saving it in spreadsheets or databases for retrieval purposes. On a majority of sites, text content can be easily accessed in the source code however a good number of business houses are making use of Portable Document Format. This format had been launched by Adobe and documents in this format can be easily viewed on almost any operating system. Some people convert documents from word to PDF when they need sending files over the Net and many convert PDF to word so that they could edit their documents. The best benefit that one gets for making use of it is that documents look a replica of the original and there is no form of disturbance in viewing them as they appear organized and same on almost all operating systems. The downside of the format is that text in such files is converted into a picture or image and then copying and pasting it is not possible any more.

Scraping in this format is a procedure where data is scraped that is available in such files. Most diverse of the tools is needed in order to carry out scraping in a document that is created in this format. You'd find two main forms of PDF files where one is built from a text file and the other firm is where it is built from some image. There is software brought by Adobe itself which can capably do scraping in text based files. For files that are image-based, there is a need to make use of special application for the task.

OCR program is one primary tool to be used for such a matter. Optical Recognition Program is capable in scanning documents for small picture that can be segregated into letters. The pictures are compared with actual letters and given they match well; the letters get copied into one file. These programs are able to do scraping in an apt way in image-based files pretty much aptly however it cannot be said that they are perfect. Once the procedure is done you could search through data so as to find those areas and parts which you had been looking for. More often than not it is difficult to find a utility that can obtain exact data that is needed without proper customization. But if thoroughly checked, you cou

Source: http://ezinearticles.com/?Scraping-in-PDF-Files---Improving-Accessibility&id=6108439

Monday, 5 December 2016

Data Discovery vs. Data Extraction

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.

Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Saturday, 3 December 2016

Data Discovery vs. Data Extraction

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.

Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Wednesday, 30 November 2016

An Easy Way For Data Extraction

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

However, there are some more scraping tolls are available in internet. And also some of esteemed websites are providing the information about these tools. You download these tools by paying a nominal amount.

Source: http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104

Wednesday, 23 November 2016

How to scrape search results from search engines like Google, Bing and Yahoo

How to scrape search results from search engines like Google, Bing and Yahoo

Search giants like Google, Yahoo and Bing made their empire on scraping others content. However, they don’t want you to scrape them. How ironic, isn’t it?

Search engine performance is a very important metric all digital marketers want to measure and improve. I’m sure you will be using some great SEO tools to check how your keywords perform. All great SEO tool comes with a search keyword ranking feature. The tools will tell you how your keywords are performing in google, yahoo bing etc.

 How will you get data from search engines If you want to build a keyword ranking app?

 These search engines have API’s but the daily query limit is very low and not useful for the commercial purpose. The only solution is to scrape search results. Search engine giants obviously know this :). Once they know that you are scraping, they will  block your IP, Period!

 How do Search engines detect bots?

 Here are the common methods of detection of bots.

* IP address: Search engines can detect if there are too many requests coming from a single IP. If a high amount of traffic is detected, they will throw a captcha.

 * Search patterns: Search engines match traffic patterns to an existing set of patterns and if there is huge variation, they will classify this as a bot.

 If you don’t have access to sophisticated technology, it is impossible to scrape search engines like google, Bing or Yahoo.

 How to avoid detection

There are some things you can do to  avoid detection.

    Scrape slowly and don’t try to squeeze everything at once.
    Switch user agents between queries
    Scrape randomly and don’t follow the same pattern
    Use intelligent IP rotations
    Clear Cookies after each IP change or disable them completely

Thanks for reading this blog post.

Source: http://blog.datahut.co/how-to-scrape-search-results-from-search-engines-like-google-bing-and-yahoo/

Monday, 7 November 2016

Tapping The Mining Services Goldmine

Tapping The Mining Services Goldmine

In Australia, resources booms tend to come and go. In a recent speech, Reserve Bank Deputy Governor Ric Battellino identified five major booms over the last two hundred years - from the gold rush of the 1850s, to our current minerals and energy boom.

Many have argued that the current boom is different from anything we've experienced before, with the modernisation of the Chinese and Indian economies likely to keep demand high for decades. That's led some analysts to talk of a resources supercycle. And yet a supercycle is still a cycle.

By definition, cycles are uneven, with commodity prices ebbing and flowing in response to demand, economic conditions and market sentiment. And the share prices of resources companies tend to move with them.

Which raises the question: what's the best way for investors to tap into the potential of the mining boom, without the heart-stopping volatility that mining stocks sometimes deliver?
Invest in the store that sells the spade

Legend has it that the people who really profited from Australia's gold rush weren't the miners who flocked to the fields, but the store-owners who sold them their spades and pans. You can put the same principle to work today by investing in mining services and engineering companies.

Here are five reasons to consider giving mining services companies a place in your portfolio:

1. Growing demand

In November, the Australian Bureau of Agricultural and Resource Economics reported that mining and energy companies plan to invest a record $132.9bn in new projects, a 58% increase from the previous year. That includes 72 projects at an advanced stage of development, such as the $43bn Gorgon LNG project and the $20bn Olympic dam expansion. The mining services sector is poised to benefit from all of them.

The sector also stands to benefit from Australia's worsening skills shortage, with more companies looking to contractors to provide essential services in remote locations.

2. Less volatility

Resource stocks tend to fluctuate with commodity prices, which are subject to international economic forces and market sentiment beyond the control of any individual company. As a result, they are among the most volatile companies on the Australian sharemarket. But mining services stocks, while still exposed to the commodities cycle, tend to be more stable.

3. More predictable cash flow

One reason for the comparative volatility of commodity companies is that their cash flow can be very variable. In the development phase, they need to make significant capital expenditure, often leading to negative cash flows. And while they enjoy healthy revenues in the production phase, that revenue may diminish as a resource is exhausted, unless they make further investments in exploration and development.
In contrast, mining services companies require comparatively little capital investment, with more predictable cash flows over the long-term.

4. Higher dividends

Predictable cash flows and lower capital expenditures often allow services companies to pay out more of their earnings as dividends, making them more appealing for income-oriented investors.

5. No need to pick winners

Many miners are highly leveraged to demand for a single commodity, whether it's gold, coal, copper or iron ore. Some are reliant on a single mine or field. Whereas services companies generally have a more diversified customer base.

Source: http://ezinearticles.com/?Tapping-The-Mining-Services-Goldmine&id=5924837

Thursday, 20 October 2016

Web Scraping with Python: A Beginner’s Guide

Web Scraping with Python: A Beginner’s Guide

In the Big Data world, Web Scraping or Data extraction services are the primary requisites for Big Data Analytics. Pulling up data from the web has become almost inevitable for companies to stay in business. Next question that comes up is how to go about web scraping as a beginner.

Data can be extracted or scraped from a web source using a number of methods. Popular websites like Google, Facebook, or Twitter offer APIs to view and extract the available data in a structured manner.  This prevents the use of other methods that may not be preferred by the API provider. However, the demand to scrape a website arises when the information is not readily offered by the website. Python, an open source programming language is often used for Web Scraping due to its simple and rich ecosystem. It contains a library called “BeautifulSoup” which carries on this task. Let’s take a deeper look into web scraping using python.

Setting up a Python Environment:

To carry out web scraping using Python, you will first have to install the Python Environment, which enables to run code written in the python language. The libraries perform data scraping;

Beautiful Soup is a convenient-to-use python library. It is one of the finest tools for extracting information from a webpage. Professionals can scrape information from web pages in the form of tables, lists, or paragraphs. Urllib2 is another library that can be used in combination with the BeautifulSoup library for fetching the web pages. Filters can be added to extract specific information from web pages. Urllib2 is a Python module that can fetch URLs.

For MAC OSX :

To install Python libraries on MAC OSX, users need to open a terminal win and type in the following commands, single command at a time:

sudoeasy_install pip

pip install BeautifulSoup4

pip install lxml

For Windows 7 & 8 users:

Windows 7 & 8 users need to ensure that the python environment gets installed first. Once, the environment is installed, open the command prompt and find the way to root C:/ directory and type in the following commands:

easy_install BeautifulSoup4

easy_installlxml

Once the libraries are installed, it is time to write data scraping code.

Running Python:

Data scraping must be done for a distinct objective such as to scrape current stock of a retail store. First, a web browser is required to navigate the website that contains this data. After identifying the table, right click anywhere on it and then select inspect element from the dropdown menu list. This will cause a window to pop-up on the bottom or side of your screen displaying the website’s html code. The rankings appear in a table. You might need to scan through the HTML data until you find the line of code that highlights the table on the webpage.

Python offers some other alternatives for HTML scraping apart from BeautifulSoup. They include:

    Scrapy
    Scrapemark
    Mechanize

 Web scraping converts unstructured data from HTML code into structured form such as tabular data in an Excel worksheet. Web scraping can be done in many ways ranging from the use of Google Docs to programming languages. For people who do not have any programming knowledge or technical competencies, it is possible to acquire web data by using web scraping services that provide ready to use data from websites of your preference.

HTML Tags:

To perform web scraping, users must have a sound knowledge of HTML tags. It might help a lot to know that HTML links are defined using anchor tag i.e. <a> tag, “<a href=“http://…”>The link needs to be here </a>”. An HTML list comprises <ul> (unordered) and <ol> (ordered) list. The item of list starts with <li>.

HTML tables are defined with<Table>, row as <tr> and columns are divided into data as <td>;

    <!DOCTYPE html> : A HTML document starts with a document type declaration
    The main part of the HTML document in unformatted, plain text is defined by <body> and </body> tags
    The headings in HTML are defined using the heading tags from <h1> to <h5>
    Paragraphs are defined with the <p> tag in HTML
    An entire HTML document is contained between <html> and </html>

Using BeautifulSoup in Scraping:

While scraping a webpage using BeautifulSoup, the main concern is to identify the final objective. For instance, if you would like to extract a list from webpage, a step wise approach is required:

    First and foremost step is to import the required libraries:

 #import the library used to query a website

import urllib2

#specify the url wiki = “https://”

#Query the website and return the html to the variable ‘page’

page = urllib2.urlopen(wiki)

#import the Beautiful soup functions to parse the data returned from the website

from bs4 import BeautifulSoup

#Parse the html in the ‘page’ variable, and store it in Beautiful Soup format

soup = BeautifulSoup(page)

    Use function “prettify” to visualize nested structure of HTML page
    Working with Soup tags:

Soup<tag> is used for returning content between opening and closing tag including tag.

    In[30]:soup.title

 Out[30]:<title>List of Presidents in India till 2010 – Wikipedia, the free encyclopedia</title>

    soup.<tag>.string: Return string within given tag
    In [38]:soup.title.string
    Out[38]:u ‘List of Presidents in India and Brazil till 2010 in India – Wikipedia, the free encyclopedia’
    Find all the links within page’s <a> tags: Tag a link using tag “<a>”. So, go with option soup.a and it should return the links available in the web page. Let’s do it.
    In [40]:soup.a

Out[40]:<a id=”top”></a>

    Find the right table:

As a table to pull up information about Presidents in India and Brazil till 2010 is being searched for, identifying the right table first is important. Here’s a command to scrape information enclosed in all table tags.

all_tables= soup.find_all(‘table’)

Identify the right table by using attribute “class” of table needs to filter the right table. Thereafter, inspect the class name by right clicking on the required table of web page as follows:

    Inspect element
    Copy the class name or find the class name of right table from the last command’s output.

 right_table=soup.find(‘table’, class_=’wikitable sortable plainrowheaders’)

right_table

That’s how we can identify the right table.

    Extract the information to DataFrame: There is a need to iterate through each row (tr) and then assign each element of tr (td) to a variable and add it to a list. Let’s analyse the Table’s HTML structure of the table. (extract information for table heading <th>)

To access value of each element, there is a need to use “find(text=True)” option with each element.  Finally, there is data in dataframe.

There are various other ways to scrape data using “BeautifulSoup” that reduce manual efforts to collect data from web pages. Code written in BeautifulSoup is considered to be more robust than the regular expressions. The web scraping method we discussed use “BeautifulSoup” and “urllib2” libraries in Python. That was a brief beginner’s guide to start using Python for web scraping.

Source: https://www.promptcloud.com/blog/web-scraping-python-guide

Sunday, 2 October 2016

How to use Web Content Extractor(WCE) as Email Scraper?

How to use Web Content Extractor(WCE) as Email Scraper?

Web Content Extractor is a great web scraping software developed by Newprosoft Team. The software has easy to use project wizard to create a scraping configuration and scrape data from websites.

One day I came to see the Visual Email Extractor which is also product of Newprosoft and similar to Web Content Extractor but it’s primary use is to scrape email addresses by crawling websites you feed to the scraper. I had noticed that with the little modification in Web Content Extractor project configuration you can use it same as Visual Email Extractor to extract email addresses.

In this post I will show you what configuration makes the Web Content Extractor to extract email addresses. I still recommend Visual Email Extractor as it has lot more features then extracting email using WCE.

Here are the configuration that makes WCE to Extract Emails.

Step 1 : Open Web Content Extractor and Create New Project and Click on Next.

Step 2:  Under Crawling Rules -> Advanced Rules Tab do the following settings

Crawling Level 1 Settings

Follow Links if link text equals:
*contact*; *feedback*; *support*; *about*

for 'Follow Links if link text equals' text box enter following values:
contact; feedback; support; about

for 'Do not Follow links if URL contains' text box enter following values:

google.; yahoo.; bing; msn.; altavista.; myspace.com; youtube.com; googleusercontent.com; =http; .jpg; .gif; .png; .bmp; .exe; .zip; .pdf;

Set 'Maximum Crawling Deapth' to 2

set 'Crawling Order' to Deapth First Crawling

Tick mark below below check boxes:

->Follow all internal links

  Crawling Level 2  Settings

set 'Follow links if link text equals' to below value

*contact*; *feedback*; *support*; *about*

set 'Follow links if url contains' text box to below value

contact; feedback; support; about

set 'DO NOT follow links if url contains' text box to below value

=http

Step 3 After doing above settings now click on Next  -> in Extraction Pattern window -> Click on Define ->  in Web Page Address (URL) give any URL where email is given.  and click on  + sign right of Date Fields to define scraping pattern.

Now inside HTML Structure selects HTML check box or Body check box which means for each page it will take whole page content to parse data.

Now last settings to extract emails from page using regular expression based email extraction function.  Open Predefined Script window and select ‘Extract_Email_Addresses‘ and click on OK. and if you have used page that contains email then in Script Result’ you will be able to see the harvested email.

Hope this will help you to use your Web Content Extractor as a Email Scraper.. Share your view in comment.

Source: http://webdata-scraping.com/use-web-content-extractor-as-email-scraper/

Tuesday, 20 September 2016

Web Scraping – A trending technique in data science!!!

Web Scraping – A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

  •     Collect data from real estate listing
  •     Collecting retailer sites data on daily basis
  •     Extracting offers and discounts from a website.
  •     Scraping job posting.
  •     Price monitoring with competitors.
  •     Gathering leads from online business directories – directory scraping
  •     Keywords research
  •     Gathering targeted emails for email marketing – email scraping
  •     And many more.

There are various techniques used for data gathering as listed below:

  •     Human copy-and-paste – takes lot of time to finish when data is huge
  •     Programming the Custom Web Scraper as per the needs.
  •     Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Friday, 9 September 2016

How Web Scraping for Brand Monitoring is used in Retail Sector

How Web Scraping for Brand Monitoring is used in Retail Sector

Structured or unstructured, business data always plays an instrumental part in driving growth, development, and innovation for your dream venture. Irrespective of industrial sectors or verticals, big data, seems to be of paramount significance for every business or enterprise.

The unsurpassed popularity and increasing importance of big data gave birth to the concept of web scraping, thus enhancing growth opportunities for startups. Large or small, every business establishment will now achieve successful website monitoring and tracking.
How web scraping serves your branding need?

Web scraping helps in extracting unorganized data and ordering it into organized and manageable formats. So if your brand is being talked about in multiple ways (on social media, on expert forums, in comments etc.), you can set the scraping tool algorithm to fetch only data that contains reference about the brand. As an outcome, marketers and business owners around the brand can gauge brand sentiment and tweak their launch marketing campaign to enhance visibility.

Look around and you will discover numerous web scraping solutions ranging from manual to fully automated systems. From Reputation Tracking to Website monitoring, your web scraper can help create amazing insights from seemingly random bits of data (both in structured as well as unstructured format).
Using web scraping

The concept of web scraping revolutionizes the use of big data for business. With its availability across sectors, retailers are on cloud nine. Here’s how the retail market is utilizing the power of Web Scraping for brand monitoring.

Determining pricing strategy

The retail market is filled with competition. Whether it is products or pricing strategies, every retailer competes hard to stay ahead of the growth curve. Web scraping techniques will help you crawl price comparison sites’ pricing data, product descriptions, as well as images to receive data for comparison, affiliation, or analytics.

As a result, retailers will have the opportunity to trade their products at competitive prices, thus increasing profit margins by a whopping 10%.

Tracking online presence

Current trends in ecommerce herald the need for a strong online presence. Web scraping takes cue from this particular aspect, thus scraping reviews and profiles on websites. By providing you a crystal clear picture of product performance, customer behavior, and interactions, web scraping will help you achieve Online Brand Intelligence and monitoring.
Detection of fraudulent reviews

Present-day purchasers have this unique habit of referring to reviews, before finalizing their purchase decisions. Web scraping helps in the identification of opinion-spamming, thus figuring out fake reviews. It will further extend support in detecting, reviewing, streamlining, or blocking reviews, according to your business needs.
Online reputation management

Web data scraping helps in figuring out avenues to take your ORM objectives forward. With the help of the scraped data, you learn about both the impactful as well as vulnerable areas for online reputation management. You will have the web crawler identifying demographic opinions such as age group, gender, sentiments, and GEO location.

Social media analytics

Since social media happens to be one of the most crucial factors for retailers, it will be imperative to Scrape Social Media websites and extract data from Twitter. The web scraping technology will help you watch your brand in Social Media along with fetching Data for social media analytics. With social media channels such as Twitter monitoring services, you will strengthen your firm’s’ branding even more than before.
Advantages of BM

As a business, you might want to monitor your brand in social media to gain deep insights about your brand’s popularity and the current consumer behavior. Brand monitoring companies will watch your brand in social media and come up with crucial data for social media analytics. This process has immense benefits for your business, these are summarized over here –

Locate Infringers

Leading brands often face the challenge thrown by infringers. When brand monitoring companies keep a close look at products available in the market, there is less probability of a copyright infringement. The biggest infringement happens in the packaging, naming and presentation of products. With constant monitoring and legal support provided by the Trademark Law, businesses could remain protected from unethical competitors and illicit business practices.

Manage Consumer Reaction and Competitor’s Challenges

A good business keeps a check on the current consumer sentiment in the targeted demographic and positively manages the same in the interest of their brand. The feedback from your consumers could be affirmative or negative but if you have a hold on the social media channels, web platforms and forums, you, as a brand will be able to propagate trust at all times.

When competitor brands indulge in backbiting or false publicity about your brand, you can easily tame their negative comments by throwing in a positive image in front of your target audience. So, brand monitoring and its active implementation do help in positive image building and management for businesses.
Why Web scraping for BM?

Web scraping for brand monitoring gives you a second pair of eyes to look at your brand as a general consumer. Considering the flowing consumer sentiment in the market during a specific business season, you could correct or simply innovate better ways to mold the target audience in your brand’s favor. Through a systematic approach towards online brand intelligence and monitoring, future business strategies and possible brand responses could be designed, keeping your business actively prepared for both types of scenarios.

For effective web scraping, businesses extract data from Twitter that helps them understand ‘what’s trending’ in their business domain. They also come closer to reality in terms of brand perception, user interaction and brand visibility in the notions of their clientele. Web scraping professionals or companies scrape social media websites to gather relevant data related to your brand or your competitor’s that has the potential to affect your growth as a business. Management and organization of this data is done to extract out significant and reference building facts. Future strategy for your brand is designed by brand monitoring professionals keeping in mind the facts accumulated through web scraping. The data obtained through web scraping helps in –

Knowing the actual brand potential,
Expanding brand coverage,
Devising brand penetration,
Analyzing scope and possibilities for a brand and
Design thoughtful and insightful brand strategies.

In simple words, web scraping provides a business enough base of information that could be used to devise future plans and to make suggestive changes in the current business strategy.

Advantages of Web scraping for BM

Web scraping has made things seamless for businesses involved in managing their brands and active brand monitoring. There is no doubt, that web scraping for brand monitoring comes with immense benefits, some of these are –

Improved customer insight

When you have in hand and factual knowledge about your consumer base through social media channels, you are in a strong position to portray your positive image as a brand. With more realistic data on your hands, you could develop strategies more effectively and make realistic goals for your brand’s improvement. Social media insights also allows marketers to create highly targeted and custom marketing messages – thus leading to better likelihood of sales conversion.

Monitoring your Competition

Web scraping helps you realize where your brand stands in the market among the competition. The actual penetration of your brand in the targeted segment helps in getting a clear picture of your present business scenario. Through careful removal of competition in your concerned business category, you could strengthen your brand image.

Staying Informed

When your brand monitoring team is keeping track of all social media channels, it becomes easier for you to stay informed about latest comments about your business on sites like Facebook, Twitter and social forums etc. You could have deep knowledge about the consumer behavior related to your brand and your competitors on these web destinations.

Improved Consumer Satisfaction and Sales

Reputation tracking done through web scraping helps in generating planned response at times of crisis. It also mends the communication gap between consumer and the brand, hence improving the consumer satisfaction. This automatically translates into trust building and brand loyalty improving your brand’s sales.

To sign off

By granting opportunities to monitor your social media data, web scraping is undoubtedly helping retail businesses take a significant step towards perfect branding. If you are one of the key players in this sector, there’s reason for celebration ahead!

Source: https://www.promptcloud.com/blog/How-Web-Scraping-for-Brand-Monitoring-is-used-in-Retail-Sector

Tuesday, 30 August 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Tuesday, 23 August 2016

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence

Business Intelligence has become a very important activity in the business arena irrespective of the domain due to the fact that managers need to analyze comprehensively in order to face the challenges.

Data sourcing, data analysing, extracting the correct information for a given criteria, assessing the risks and finally supporting the decision making process are the main components of BI.

In a business perspective, core stakeholders need to be well aware of all the above stages and be crystal clear on expectations. The person, who is being assigned with the role of Business Analyst (BA) for the BI initiative either from the BI solution providers' side or the company itself, needs to take the full responsibility on assuring that all the above steps are correctly being carried out, in a way that it would ultimately give the business the expected leverage. The management, who will be the users of the BI solution, and the business stakeholders, need to communicate with the BA correctly and elaborately on their expectations and help him throughout the process.

Data sourcing is an initial yet crucial step that would have a direct impact on the system where extracting information from multiple sources of data has to be carried out. The data may be on text documents such as memos, reports, email messages, and it may be on the formats such as photographs, images, sounds, and they can be on more computer oriented sources like databases, formatted tables, web pages and URL lists. The key to data sourcing is to obtain the information in electronic form. Therefore, typically scanners, digital cameras, database queries, web searches, computer file access etc, would play significant roles. In a business perspective, emphasis should be placed on the identification of the correct relevant data sources, the granularity of the data to be extracted, possibility of data being extracted from identified sources and the confirmation that only correct and accurate data is extracted and passed on to the data analysis stage of the BI process.

Business oriented stake holders guided by the BA need to put in lot of thought during the analyzing stage as well, which is the second phase. Synthesizing useful knowledge from collections of data should be done in an analytical way using the in-depth business knowledge whilst estimating current trends, integrating and summarizing disparate information, validating models of understanding, and predicting missing information or future trends. This process of data analysis is also called data mining or knowledge discovery. Probability theory, statistical analysis methods, operational research and artificial intelligence are the tools to be used within this stage. It is not expected that business oriented stake holders (including the BA) are experts of all the above theoretical concepts and application methodologies, but they need to be able to guide the relevant resources in order to achieve the ultimate expectations of BI, which they know best.

Identifying relevant criteria, conditions and parameters of report generation is solely based on business requirements, which need to be well communicated by the users and correctly captured by the BA. Ultimately, correct decision support will be facilitated through the BI initiative and it aims to provide warnings on important events, such as takeovers, market changes, and poor staff performance, so that preventative steps could be taken. It seeks to help analyze and make better business decisions, to improve sales or customer satisfaction or staff morale. It presents the information that manager's need, as and when they need it.

In a business sense, BI should go several steps forward bypassing the mere conventional reporting, which should explain "what has happened?" through baseline metrics. The value addition will be higher if it can produce descriptive metrics, which will explain "why has it happened?" and the value added to the business will be much higher if predictive metrics could be provided to explain "what will happen?" Therefore, when providing a BI solution, it is important to think in these additional value adding lines.

Data warehousing

In the context of BI, data warehousing (DW) is also a critical resource to be implemented to maximize the effectiveness of the BI process. BI and DW are two terminologies that go in line. It has come to a level where a true BI system is ineffective without a powerful DW, in order to understand the reality behind this statement, it's important to have an insight in to what DW really is.

A data warehouse is one large data store for the business in concern which has integrated, time variant, non volatile collection of data in support of management's decision making process. It will mainly have transactional data which would facilitate effective querying, analyzing and report generation, which in turn would give the management the required level of information for the decision making.

The reasons to have BI together with DW

At this point, it should be made clear why a BI tool is more effective with a powerful DW. To query, analyze and generate worthy reports, the systems should have information available. Importantly, transactional information such as sales data, human resources data etc. are available normally in different applications of the enterprise, which would obviously be physically held in different databases. Therefore, data is not at one particular place, hence making it very difficult to generate intelligent information.

The level of reports expected today, are not merely independent for each department, but managers today want to analyze data and relationships across the enterprise so that their BI process is effective. Therefore, having data coming from all the sources to one location in the form of a data warehouse is crucial for the success of the BI initiative. In a business viewpoint, this message should be passed and sold to the managements of enterprises so that they understand the value of the investment. Once invested, its gains could be achieved over several years, in turn marking a high ROI.

Investment costs for a DW in the short term may look quite high, but it's important to re-iterate that the gains are much higher and it will span over many years to come. It also reduces future development cost since with the DW any requested report or view could be easily facilitated. However, it is important to find the right business sponsor for the project. He or she needs to communicate regularly with executives to ensure that they understand the value of what's being built. Business sponsors need to be decisive, take an enterprise-wide perspective and have the authority to enforce their decisions.

Process

Implementation of a DW itself overlaps with some phases of the above explained BI process and it's important to note that in a process standpoint, DW falls in to the first few phases of the entire BI initiative. Gaining highly valuable information out of DW is the latter part of the BI process. This can be done in many ways. DW can be used as the data repository of application servers that run decision support systems, management Information Systems, Expert systems etc., through them, intelligent information could be achieved.

But one of the latest strategies is to build cubes out of the DW and allow users to analyze data in multiple dimensions, and also provide with powerful analytical supporting such as drill down information in to granular levels. Cube is a concept that is different to the traditional relational 2-dimensional tabular view, and it has multiple dimensions, allowing a manager to analyze data based on multiple factors, and not just two factors. On the other hand, it allows the user to select whatever the dimension he wish to choose for analyzing purposes and not be limited by one fixed view of data, which is called as slice & dice in DW terminology.

BI for a serious enterprise is not just a phase of a computerization process, but it is one of the major strategies behind the entire organizational drivers. Therefore management should sit down and build up a BI strategy for the company and identify the information they require in each business direction within the enterprise. Given this, BA needs to analyze the organizational data sources in order to build up the most effective DW which would help the strategized BI process.

High level Ideas on Implementation

At the heart of the data warehousing process is the extract, transform, and load (ETL) process. Implementation of this merely is a technical concern but it's a business concern to make sure it is designed in such a way that it ultimately helps to satisfy the business requirements. This process is responsible for connecting to and extracting data from one or more transactional systems (source systems), transforming it according to the business rules defined through the business objectives, and loading it into the all important data model. It is at this point where data quality should be gained. Of the many responsibilities of the data warehouse, the ETL process represents a significant portion of all the moving parts of the warehousing process.

Creation of a powerful DW depends on the correctness of data modeling, which is the responsibility of the database architect of the project, but BA needs to play a pivotal role providing him with correct data sources, data requirements and most importantly business dimensions. Business Dimensional modeling is a special method used for DW projects and this normally should be carried out by the BA and from there onwards technical experts should take up the work. Dimensions are perspectives specific to a business that could be used for analysis purposes. As an example, for a sales database, the dimensions could include Product, Time, Store, etc. Obviously these dimensions differ from one business to another and hence for each DW initiative those dimensions should be correctly identified and that could be very well done by a person who has experience in the DW domain and understands the business as well, making it apparent that DW BA is the person responsible.

Each of the identified dimensions would be turned in to a dimension table at the implementation phase, and the objective of the above explained ETL process is to fill up these dimension tables, which in turn will be taken to the level of the DW after performing some more database activities based on a strong underlying data model. Implementation details are not important for a business stakeholder but being aware of high level process to this level is important so that they are also on the same pitch as that of the developers and can confirm that developers are actually doing what they are supposed to do and would ultimately deliver what they are supposed to deliver.

Security is also vital in this regard, since this entire effort deals with highly sensitive information and identification of access right to specific people to specific information should be correctly identified and captured at the requirements analysis stage.

Advantages

There are so many advantages of BI system. More presentation of analytics directly to the customer or supply chain partner will be possible. Customer scores, customer campaigns and new product bundles can all be produced from analytic structures resulting in high customer retention and creation of unique products. More collaboration within information can be achieved from effective BI. Rather than middle managers getting great reports and making their own areas look good, information will be conveyed into other functions and rapidly shared to create collaborative decisions increasing the efficiency and accuracy. The return on human capital will be greatly increased.

Managers at all levels will save their time on data analysis, and hence saving money for the enterprise, as the time of managers is equal to money in a financial perspective. Since powerful BI would enable monitoring internal processes of the enterprises more closely and allow making them more efficient, the overall success of the organization would automatically grow. All these would help to derive a high ROI on BI together with a strong DW. It is a common experience to notice very high ROI figures on such implementations, and it is also important to note that there are many non-measurable gains whilst we consider most of the measurable gains for the ROI calculation. However, at a stage where it is intended to take the management buy-in for the BI initiative, it's important to convert all the non measurable gains in to monitory values as much as possible, for example, saving of managers time can be converted in to a monitory value using his compensation.

The author has knowledge in both Business and IT. Started career as a Software Engineer and moved to work in the business analysis area of a premier US based software company.

Source: http://ezinearticles.com/?Business-Intelligence-and-Data-Warehousing-in-a-Business-Perspective&id=35640

Wednesday, 10 August 2016

Web Scraping Best Practices

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.
Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.
Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.
Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.
Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.
Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source: http://nocodewebscraping.com/web-scraping-best-practices/

Thursday, 4 August 2016

Data Discovery vs. Data Extraction

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.

Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Monday, 1 August 2016

Best Alternative For Linkedin Data Scraping

Best Alternative For Linkedin Data Scraping

When I started my career in sales, one of the things that my VP of sales told me is that ” In sales, assumptions are the mother of all f**k ups “. I know the F word sounds a bit inappropriate, but that is the exact word he used. He was trying to convey the simple point that every prospect is different, so don’t guess, use data to come up with decisions.

I joined Datahut and we are working on a product that helps sales people. I thought I should discuss it with you guys and take your feedback.

Let me tell you how the idea evolved itself. At Datahut, we get to hear a lot of problems customers want to solve. Almost 30 percent of all the inbound leads ask us to help them with lead generation.

Most of them simply ask, “Can you scrape Linkedin for me”?

Every time, we politely refused.

But not anymore, we figured out a way to solve their problem without scraping Linkedin.

This should raise some questions in your mind.

1) What problem is he trying to solve?– Most of the time their sales team does not have the accurate data about the prospects. This leads to a total chaos. It will end up in a waste of both time and money by selling the leads that are not sales qualified.

2) Why do they need data specifically from Linkedin? – LinkedIn is the world’s largest business network. In his view, there is no better place to find leads for his business than Linkedin. It is right in a way.

3) Ok, then what is wrong in scraping Linkedin? – Scraping Linkedin is against its terms and it can lead to legal issues. Linkedin has an excellent anti-scraping mechanism which can make the scraping costly.

4) How severe is the problem? – The problem has a direct impact on the revenues as the productivity of the sales team is too low. Without enough sales, the company is a joke.

5) Is there a better way? – Of course yes. The people with profiles in LinkedIn are in other sites too. eg. Google plus, CrunchBase etc. If we can mine and correlate the data, we can generate leads with rich information. It will have better quality than scraping LinkedIn.

6) What to do when the machine intelligence fails? – We have to use human intelligence. Period!

Datahut is working on a platform that can help you get leads that match your ideal buyer persona. It will be a complete Business intelligence platform powered by machine and human intelligence for an efficient lead research & discovery.We named it Leadintel. We’ve also established some partnerships that help to enrich the data and saves the trouble of lawsuits.

We are opening our platform for beta users. You can request an invitation using the contact form. What do you think about this? What are your suggestions?

Thanks for reading this blog post. Datahut offers affordable data extraction services (DaaS) . If you need help with your web scraping projects let us know and we will be glad to help.

Source:http://blog.datahut.co/best-alternative-for-linkedin-data-scraping/

Tuesday, 12 July 2016

4 Web Scraping Tools To Save You Time On Data Extraction

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

Uipath  specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

 Import.io  offers you a free desktop app to help you scrap all the data you need from an unlimited amount of web pages. The service treats each page as a potential data source to generate API from. If the page you’ve submitted has been previously processed, you can access its API and get some of the data. In other case, Import.io will guide you through the process of creating the scraping matrix by building connectors (for navigation) or extractors (to pull out the needed data). Afterwards, you submit a request for extraction and it’s typically processed within 24 hours. All the data is private and you can schedule auto refreshments at any chosen period of time.

Pros: The service is easy-to-use with no tech skills needed. It can  pages with data (those that needed login/pass), plus it’s free. Minimalistic effective design and simple navigation comes along.

Cons: Improt.io has hard times navigating through combinations of javascript/POST and cannot navigate from one page to another (e.g. click next, second page etc).  Sometimes, it takes over 24 hours to receive the report.  Besides, it’s a browser-only app, non-compatible with other applications.

Kimono is a popular web scraper among app developers who prefer to power up their products with live data and no additional code. It saves you tons of time when you need to fill up your app with mashing data. Install Kimono Browser bookmarklet; highlight page elements you need to and provide some positive/negative examples to train the tool. After labeling all the data you can download it in CSV/JSON/a web endpoint format. The APIs created for your pages are stored in the cloud and you can run them on schedule. So far, Kimono is free to use with pro and enterprise solutions to be launched soon.

Pros: The tool works pretty fast and works great with scraping newsfeeds and prices. The data is rather accurate.

Cons: No page navigation available and you need to spend quite a lot of time to train Kimono before it starts to pull out the multi items data accurate enough. In general, I’d say Kimono is more of an app mash-ups creator than a full-scale web scraper.

 Screen Scraper  is pretty neat and tackles a lot of difficult tasks including navigation and precise data extractions, however it requires a bit of programming/tokenization skills if you’d like to run it super smooth. Launch the software, add a proxy, start recording the list of your actions and creating extracting patterns (some coding required). Works great with HTML and Javascript, however you should test it with Citrix and other platforms. Basically, screen scraper helps you writing simple web scraping scripts and lets you download the extracted data in txt/csv/excel format.

Pros: When set correctly, there’s no data extraction tasks Screen scraper fails to handle.
Cons: The tool is pricey and you’ll have to go through documentation and have basic coding skills to use it.

Source URL :  http://tech.co/4-web-scraping-tools-save-time-data-extraction-2015-03

Friday, 8 July 2016

ECJ clarifies Database Directive scope in screen scraping case

EC on the legal protection of databases (Database Directive) in a case concerning the extraction of data from a third party’s website by means of automated systems or software for commercial purposes (so called 'screen scraping').

Flight data extracted

The case, Ryanair Ltd vs. PR Aviation BV, C-30/14, is of interest to a range of companies such as price comparison websites. It stemmed from  Dutch company PR Aviation operation of a website where consumers can search through flight data of low-cost airlines  (including Ryanair), compare prices and, on payment of a commission, book a flight. The relevant flight data is extracted from third-parties’ websites by means of ‘screen scraping’ practices.

Ryanair claimed that PR Aviation’s activity:

• amounted to infringement of copyright (relating to the structure and architecture of the database) and of the so-called sui generis database right (i.e. the right granted to the ‘maker’ of the database where certain investments have been made to obtain, verify, or present the contents of a database) under the Netherlands law implementing the Database Directive;

• constituted breach of contract. In this respect, Ryanair claimed that a contract existed with PR Aviation for the use of its website. Access to the latter requires acceptance, by clicking a box, of the airline’s general terms and conditions which, amongst others, prohibit unauthorized ‘screen scraping’ practices for commercial purposes.

Ryanair asked Dutch courts to prohibit the infringement and order damages. In recent years the company has been engaged in several legal cases against web scrapers across Europe.

The Local Court, Utrecht, and the Court of Appeals of Amsterdam dismissed Ryanair’s claims on different grounds. The Court of Appeals, in particular, cited PR Aviation’s screen scraping of Ryanair’s website as amounting to a “normal use” of said website within the meaning of the lawful user exceptions under Sections 6 and 8 of the Database Directive, which cannot be derogated by contract (Section 15).

Ryanair appealed

Ryanair appealed the decision before the Netherlands Supreme Court (Hoge Raad der Nederlanden), which decided to refer the following question to the ECJ for a preliminary ruling: “Does the application of [Directive 96/9] also extend to online databases which are not protected by copyright on the basis of Chapter II of said directive or by a sui generis right on the basis of Chapter III, in the sense that the freedom to use such databases through the (whether or not analogous) application of Article[s] 6(1) and 8, in conjunction with Article 15 [of Directive 96/9] may not be limited contractually?.”

The ECJ’s ruling

The ECJ (without the need of the opinion of the advocate general) ruled that the Database Directive is not applicable to databases which are not protected either by copyright or by the sui generis database right. Therefore, exceptions to restricted acts set forth by Sections 6 and 8 of the Directive do not prevent the database owner from establishing contractual limitations on its use by third parties. In other words, restrictions to the freedom to contract set forth by the Database Directive do not apply in cases of unprotected databases. Whether Ryanair’s website may be entitled to copyright or sui generis database right protection needs to be determined by the competent national court.

The ECJ’s decision is not particularly striking from a legal standpoint. Yet, it could have a significant impact on the business model of price comparison websites, aggregators, and similar businesses. Owners of databases that could not rely on intellectual property protection may contractually prevent extraction and use (“scraping”) of content from their online databases. Thus, unprotected databases could receive greater protection than the one granted by IP law.

Antitrust implications

However, the lawfulness of contractual restrictions prohibiting access and reuse of data through screen scraping practices should be assessed under an antitrust perspective. In this respect, in 2013 the Court of Milan ruled that Ryanair’s refusal to grant access to its database to the online travel agency Viaggiare S.r.l. amounted to an abuse of dominant position in the downstream market of information and intermediation on flights (decision of June 4, 2013 Viaggiare S.r.l. vs Ryanair Ltd). Indeed, a balance should be struck between the need to compensate the efforts and investments made by the creator of the database with the interest of third parties to be granted with access to information (especially in those cases where the latter are not entitled to copyright protection).

Additionally, web scraping triggers other issues which have not been considered by the ECJ’s ruling. These include, but are not limited to trademark law (i.e., whether the use of a company’s names/logos by the web scraper without consent may amount to trademark infringement), data protection (e.g., in case the scraping involves personal data), or unfair competition.


Source URL :http://yellowpagesdatascraping.blogspot.in/2015/07/ecj-clarifies-database-directive-scope.html

Friday, 1 July 2016

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

 Source  URL : http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104